# Explore Translate Scale, 8 7 and more!

### Explore related topics

x = .5; m = {z = {0, 0}, {1, 0}, l = {x, -1}}; Graphics@ NestList[Rotate[#, Pi/4, l] &, Nest[Translate[Scale[#, x, z], {z, {x, 0}, {.25, x}}] &, Line@m, 8], 7]

ContourPlot[{27(x+10)^2==(9-y)y^2,(y-Abs[x+6]/2)^2+(x+6)^2==4,y-2Abs[x+2]*Boole[0>x>-4]==-2,x^3+8y^3==4x y},{x,-12,2},{y,-2,12}]

r=.6;d=Circle;p=1.6;a={m,n};b={0,p};Graphics@{NestList[Rotate[#,Pi/2,{5,5}]&,Table[{d[a,r,b],d[a+.6,r,b+2p]},{m,9},{n,9}],9]}

ContourPlot3D[(x^2-5)x^2+(y^2-5)y^2+(z^2-5)z^2,{x,-1,1},{y,-1,1},{z,-1,1},Axes->False]

l=#/(1+# Sin@t)^.1{Cos@t,Sin@t}&/@Range[0,1,.05];m=ParametricPlot[l,{t,0,12}][[1]];Graphics@NestList[Rotate[#,Pi/5,{0,-3}]&,m,9]

Graphics@Line[#, VertexColors -> ColorData@"Rainbow" /@ Subdivide@Length@#] &@ AnglePath[Nest[Flatten@{#, 1, #, -1, #, -1, #, 1, #} &, 0, 7] Pi/2]

t = Degree; Graphics@{Disk[], Table[{White, Thick, Line[{{Cos[r t], Sin[r t]}, {Cos[31 r t], Sin[31 r t]}}]}, {r, 0, 360}]}

x = .5; m = {z = {0, 0}, {1, 0}, z}; Graphics@ NestList[Rotate[#, 6, {x, 1.2}] &, Nest[Translate[Scale[#, x, z], {z, {x, 0}, {.25, x}}] &, Line@m, 7], 21]

x = .5; m = {z = {0, 0}, {1, 0}, {x, 1}}; Graphics@ NestList[Rotate[#, 6, {x, 1.2}] &, Nest[Translate[Scale[#, x, z], {z, {x, 0}, {.3, x}}] &, Line@m, 7], 21]

Graphics@{Riffle[RandomColor[25], Polygon@CirclePoints[#,6]&/@Reverse@Range@25]}

Pinterest